Complete Solutions and Summary of Some Applications of Trigonometry – NCERT Class 10, Mathematics, Chapter 9 – Summary, Questions, Answers, Extra Questions

Comprehensive summary and explanation of Chapter 9 'Some Applications of Trigonometry', covering concepts of angles of elevation and depression, line of sight, application of trigonometric ratios in calculating heights and distances in real-life problems, worked examples with step-by-step solutions, and all related NCERT questions and extra practice exercises.

Updated: 1 week ago

Categories: NCERT, Class X, Mathematics, Summary, Extra Questions, Trigonometry, Applications, Heights and Distances, Real-life Problems, Chapter 9
Tags: Trigonometry, Heights and Distances, Angle of Elevation, Angle of Depression, Line of Sight, Real-life Applications, Problem Solving, NCERT, Class 10, Mathematics, Chapter 9, Answers, Extra Questions
Post Thumbnail
Some Applications of Trigonometry Class 10 NCERT Chapter 9 - Ultimate Study Guide, Notes, Questions, Quiz 2025

Some Applications of Trigonometry

Chapter 9: Mathematics - Ultimate Study Guide | NCERT Class 10 Notes, Questions, Examples & Quiz 2025

Full Chapter Summary & Detailed Notes - Some Applications of Trigonometry Class 10 NCERT

Overview & Key Concepts

  • Chapter Goal: Apply trigonometric ratios to find heights and distances in real-life scenarios. Exam Focus: Angles of elevation/depression, word problems on towers, buildings, rivers. 2025 Updates: Emphasis on practical applications like surveying. Fun Fact: Trigonometry used in ancient architecture like pyramids. Core Idea: Use right triangles formed by line of sight. Real-World: Measuring tall structures without climbing.
  • Wider Scope: Foundation for physics (projectiles), engineering (construction), navigation.

9.1 Heights and Distances

  • Builds on Chapter 8 trig ratios; applies to everyday problems.
  • Line of Sight: Line from observer's eye to object point.
  • Angle of Elevation: Formed by line of sight with horizontal when object above (raise head). Example: Student looking at minar top, angle BAC.
  • Angle of Depression: Formed when object below (lower head). Example: Girl on balcony looking at flower pot, angle below horizontal.
  • Process: Identify right triangle, known angles/distances, use tan/sin/cos to find unknown.
  • Information Needed: Distance from object, angle of elevation/depression, observer height.
  • Example Scenarios: Towers, poles, chimneys, flags, shadows, buildings, rivers, bridges.

Example 1: Tower Height with 60° Elevation

  • Tower AB vertical, point C 15m away, angle ACB=60°. Right triangle ABC at B.
  • tan60°=AB/BC → √3=AB/15 → AB=15√3 m.
  • Detailed: Use opposite/adjacent; verify with sin/cos if needed.

Example 2: Ladder for Pole Repair

  • Pole AD=5m, repair at B=1.3m below top, BD=3.7m. Ladder BC at 60° to horizontal.
  • sin60°=BD/BC → (√3/2)=3.7/BC → BC=3.7*(2/√3)≈4.28m.
  • cot60°=DC/BD → (1/√3)=DC/3.7 → DC=3.7/√3≈2.14m.
  • Detailed: Right triangle BDC at D; hypotenuse ladder; base distance from pole.

Example 3: Chimney Height with Observer

  • Observer CD=1.5m tall, 28.5m from chimney AB, angle ADE=45°.
  • tan45°=AE/DE → 1=AE/28.5 → AE=28.5m.
  • AB=AE+BE=28.5+1.5=30m.
  • Detailed: Triangle ADE right at E; BE=observer height.

Example 4: Flag on Building

  • Building AB=10m, flag BD=x, point P, angle 30° to AB top, 45° to AD top.
  • tan30°=AB/PA → 1/√3=10/PA → PA=10√3 m.
  • tan45°=AD/PA → 1=(10+x)/(10√3) → x=10(√3-1)≈7.32m.
  • Detailed: Triangles PAB (30°), PAD (45°); same base PA.

Example 5: Tower Shadow

  • Tower AB=h, shadow BC=x at 60°, DB=40+x at 30°.
  • tan60°=h/x → √3=h/x → h=x√3.
  • tan30°=h/(40+x) → 1/√3=h/(40+x) → x√3/(40+x)=1/√3 → 3x=x+40 → x=20, h=20√3 m.
  • Detailed: Two triangles ABC (60°), ABD (30°); relate shadows.

Example 6: Multi-Storeyed Building Depression

  • Building PC, 8m building AB; angles 30° to AB top, 45° to bottom from PC top.
  • PB transversal, angles equal: PBD=30°, PAC=45°.
  • tan30°=PD/BD → BD=PD√3.
  • tan45°=PC/AC → PC=AC.
  • PC=PD+8, AC=BD → PD+8=PD√3 → PD=8/(√3-1)=4(√3+1) m.
  • Height PC=4(√3+1)+8=4√3+12 m; distance 4(√3+1)√3=4(3+√3) m.
  • Detailed: Parallel lines PQ/BD; alternate angles; equate distances.

Example 7: Bridge Across River

  • Bridge PD=3m high; angles 30° to A, 45° to B opposite banks.
  • AB=AD+DB; tan30°=PD/AD → 1/√3=3/AD → AD=3√3 m.
  • tan45°=PD/BD → 1=3/BD → BD=3 m.
  • Width AB=3+3√3=3(1+√3) m.
  • Detailed: Triangles APD (30°), BPD (45°); same height PD.

Exercise 9.1

  • 15 problems: Circus rope, broken tree, slides, tower height, kite, boy walking, transmission tower, statue, building-tower angles, poles on road, TV tower canal, cable tower, lighthouse ships, balloon, highway car.
  • Types: Single angle, two angles, heights with observers, shadows, depressions.

9.2 Summary

  • Line of sight, elevation (raise head), depression (lower head).
  • Use trig to find heights/distances.

Why This Guide Stands Out

Complete chapter coverage: Notes, examples, Q&A (all NCERT + extras), quiz. Student-centric, exam-ready for 2025. Free & ad-free.

Key Themes & Tips

  • Concepts: Elevation/depression angles, right triangles.
  • Methods: Tan for height/distance, sin/cos for hypotenuse.
  • Problems: Account for observer height, multiple triangles.
  • Tip: Draw diagrams; use positive values; approximate if needed (√3≈1.732).

Exam Case Studies

Word problems on inaccessible heights/distances; nature of solutions (positive).

Project & Group Ideas

  • Measure school building height using clinometer; model river width.

6. tan30° value?

1 Mark Answer: 1/√3.

7. tan45° value?

1 Mark Answer: 1.

8. sin60° value?

1 Mark Answer: √3/2.

9. cot60° value?

1 Mark Answer: 1/√3.

10. Tower 15m away, 60° elevation height?

1 Mark Answer: 15√3 m.

11. Ladder length for 3.7m at 60°?

1 Mark Answer: 4.28m.

12. Chimney height with 1.5m observer?

1 Mark Answer: 30m.

13. Flag length on 10m building?

1 Mark Answer: 7.32m.

14. Tower shadow 40m longer?

1 Mark Answer: 20√3 m.

15. Multi-building height?

1 Mark Answer: 4(√3+3) m.

16. River width with 3m bridge?

1 Mark Answer: 3(1+√3) m.

17. Rope height with 30°?

1 Mark Answer: 10√3 m.

18. Broken tree height?

1 Mark Answer: 8(√3+1) m.

19. Slide length 1.5m 30°?

1 Mark Answer: 3m.

20. Kite string 60m 60°?

1 Mark Answer: 60m.

Part B: 4 Marks Questions (Answers in ~6 Lines)

1. Explain line of sight with example.

4 Marks Answer: Line from observer eye to object point. In minar fig, AC from student eye to top. Forms right triangle with horizontal. Used to define elevation angle BAC.

2. Difference elevation vs depression.

4 Marks Answer: Elevation when object above, raise head; depression below, lower head. Both angles with horizontal; trig ratios same.

3. Information for minar height.

4 Marks Answer: Distance DE, angle BAC, student height AE. CD=CB+BD, BD=AE, tanA=BC/AB.

4. Tower 15m away 60° height.

4 Marks Answer: tan60°=AB/15=√3, AB=15√3 m. Right triangle at B.

5. Ladder for 3.7m at 60°.

4 Marks Answer: sin60°=3.7/BC, BC=3.7*2/√3≈4.28m. cot60°=DC/3.7, DC=3.7/√3≈2.14m.

6. Chimney with 1.5m observer 45°.

4 Marks Answer: tan45°=AE/28.5=1, AE=28.5m. AB=30m.

7. Flag on 10m building 30°/45°.

4 Marks Answer: PA=10√3. tan45°=(10+x)/PA=1, x=10(√3-1)≈7.32m.

8. Shadow 40m longer 30°/60°.

4 Marks Answer: h=x√3, h=(x+40)/√3, x=20, h=20√3 m.

9. Multi-building 30°/45° 8m.

4 Marks Answer: BD=PD√3, PC=AC, PD+8=PD√3, PD=8/(√3-1)=4(√3+1)m. Height 4√3+12m.

10. River 3m bridge 30°/45°.

4 Marks Answer: AD=3√3, BD=3, AB=3(1+√3)m.

11. Rope 20m 30° height.

4 Marks Answer: sin30°=h/20=1/2, h=10m.

12. Tree broken 30° 8m.

4 Marks Answer: tan30°=h/8=1/√3, h=8/√3. Total 8/√3 +8=8(1+1/√3).

13. Slide 1.5m 30° length.

4 Marks Answer: sin30°=1.5/l=1/2, l=3m.

14. Tower 30m away 30° height.

4 Marks Answer: tan30°=h/30=1/√3, h=10√3 m.

15. Kite 60m height 60° string.

4 Marks Answer: sin60°=60/l=√3/2, l=120/√3=40√3 m.

16. Boy walks 30° to 60° distance.

4 Marks Answer: d1= (30-1.5)√3, d2=(30-1.5)/√3, walked d1-d2.

17. Transmission tower height.

4 Marks Answer: tan45°=20/d=1, d=20. tan60°=(20+h)/20=√3, h=20(√3-1).

18. Statue on pedestal 60°/45°.

4 Marks Answer: tan60°=(h+1.6)/d=√3, tan45°=h/d=1. h=(1.6√3)/(√3-1).

19. Building tower 30°/60° 50m.

4 Marks Answer: tan60°=50/d=√3, d=50/√3. tan30°=h/d=1/√3, h=50/3 m.

20. Poles equal 60°/30° 80m road.

4 Marks Answer: tan60°=h/x=√3, tan30°=h/(80-x)=1/√3. x=60, h=20√3 m.

Part C: 8 Marks Questions (Detailed Answers)

1. Explain angle of elevation with diagram.

8 Marks Answer: When object above horizontal, line of sight makes angle with horizontal called elevation. In fig 9.1, student at A, minar CD, eye E, line AC to top C. Horizontal AE, angle BAC elevation. Right triangle ABC at B, tanA = BC/AB. Add observer height AE to BC for total CD. Used when raising head. Example: Tower view from ground. Key: Identifies opposite (height), adjacent (distance).

2. Explain angle of depression with diagram.

8 Marks Answer: When object below horizontal, angle below called depression. In fig 9.3, girl on balcony, flower pot below, line of sight down. Horizontal level, angle with it. Right triangle, tan = opposite/adjacent. Equal to elevation from pot's view. Example: From building to ground object. Key: Lower head; often in multi-level like bridges, buildings.

3. Process to find minar height.

8 Marks Answer: Need DE (distance), angle BAC (elevation), AE (student height). CD = CB + BD, BD=AE. In triangle ABC right at B, tanA = BC/AB, BC = AB tanA. Total height BC + AE. If cotA, AB = BC cotA. Choose ratio with known/unknown. Example: If AB=15m, A=60°, BC=15√3, add AE.

4. Solve tower 15m 60°.

8 Marks Answer: AB tower, CB=15m, angle ACB=60°. Right at B. tan60° = AB/15 = √3. AB=15√3 m. Verify sin60° = AB/AC, AC=AB/(√3/2)=30/√3=10√3, cos60°=15/AC=1/2, same. No observer height, assume ground level.

5. Solve ladder pole repair.

8 Marks Answer: Pole AD=5m, B=1.3m below, BD=3.7m. Ladder BC at 60°. Right BDC at D. sin60°=3.7/BC=√3/2, BC=3.7*2/√3 = (7.4/√3)* (√3/√3)=7.4√3/3≈4.28m. cot60°=DC/3.7=1/√3, DC=3.7/√3≈2.14m. Use √3≈1.73. Verify tan60°=3.7/DC=√3, same.

6. Solve chimney observer.

8 Marks Answer: Chimney AB, observer CD=1.5m, DE=28.5m, angle ADE=45°. Right at E. tan45°=AE/DE=1, AE=28.5m. AB=AE+BE, BE=1.5m (observer height), AB=30m. Diagram: Eye D, horizontal DE, line DA to top. AE is calculated height above eye, add eye height.

7. Solve flag building.

8 Marks Answer: Building AB=10m, flag BD=x, AD=10+x. Point P, angle PAB=30°, PAD=45°. tan30°=10/PA=1/√3, PA=10√3≈17.32m. tan45°=(10+x)/PA=1, 10+x=10√3, x=10(√3-1)≈7.32m. Two triangles PAB, PAD sharing PA. Distance PA same.

8. Solve shadow tower.

8 Marks Answer: Tower AB=h, shadow BC=x at 60°, DB=x+40 at 30°. tan60°=h/x=√3, h=x√3. tan30°=h/(x+40)=1/√3. Substitute h: x√3 /(x+40)=1/√3, 3x =x+40, 2x=40, x=20, h=20√3 m. Two scenarios for sun angles; longer shadow at lower angle.

9. Solve multi-building.

8 Marks Answer: Multi PC, 8m AB. From P, depression 30° to B, 45° to A. PB transversal, angles PBD=30°, PAC=45°. tan30°=PD/BD=1/√3, BD=PD√3. tan45°=PC/AC=1, PC=AC. PC=PD+DC, DC=8. AC=BD, PD+8=PD√3. PD(√3-1)=8, PD=8/(√3-1)=4(√3+1) m. PC=4(√3+1)+8=4√3+12 m. Distance AC=4(√3+1)√3=12+4√3 m.

10. Solve river bridge.

8 Marks Answer: Bridge P height PD=3m, angles 30° to A, 45° to B. AB=AD+DB. tan30°=3/AD=1/√3, AD=3√3 m. tan45°=3/BD=1, BD=3 m. AB=3+3√3=3(1+√3) m. Two triangles APD, BPD sharing height; opposite banks.

11. Solve circus rope.

8 Marks Answer: Rope 20m, angle 30° with ground. Right triangle, sin30°=h/20=1/2, h=10m. Or tan30°=h/d=1/√3, d=10√3 m, hypotenuse 20m verify.

12. Solve broken tree.

8 Marks Answer: Broken part bends 30° to ground, touch point 8m from foot. Let height h broken, total H=h + unbroken. tan30°=h/8=1/√3, h=8/√3. Unbroken=8m (hypotenuse? No, bent like hypotenuse). Broken part hypotenuse l, sin30°=8/l, l=16m, cos30°=unbroken/l, unbroken=16*(√3/2)=8√3 m. Total h + unbroken? Book: Distance 8m to touch, angle 30°, height unbroken + broken. Let unbroken a, broken b, tan30°=a/8, a=8/√3. b hypotenuse, b=8 / sin30°=16m. Total a+b=8/√3 +16=8(2 +1/√3)=8(√3+1)/√3 *√3/√3=8(3+√3)/3.

13. Solve slides contractor.

8 Marks Answer: Small slide 1.5m high, 30°. sin30°=1.5/l=1/2, l=3m. Steep 3m high, 60°. sin60°=3/l=√3/2, l=3*2/√3=2√3 m. Two cases, different angles.

14. Solve tower 30m 30°.

8 Marks Answer: tan30°=h/30=1/√3, h=30/√3=10√3 m. Simple single angle.

15. Solve kite 60m 60°.

8 Marks Answer: Height 60m above ground, angle 60°. sin60°=60/l=√3/2, l=120/√3=40√3 m. String is hypotenuse.

16. Solve boy walking building.

8 Marks Answer: Boy 1.5m tall, building 30m. Angle from eyes 30° to 60° as walks. Let distance d1 at 30°, d2 at 60°. tan30°=(30-1.5)/d1=1/√3, d1=28.5√3. tan60°=28.5/d2=√3, d2=28.5/√3. Walked d1-d2=28.5(√3 -1/√3)=28.5*(2/√3)=19√3 m approx.

17. Solve transmission tower.

8 Marks Answer: Building 20m, tower h on top. Angles 45° bottom, 60° top. tan45°=20/d=1, d=20m. tan60°=(20+h)/20=√3, 20+h=20√3, h=20(√3-1) m.

18. Solve statue pedestal.

8 Marks Answer: Statue 1.6m on pedestal h. Angle top statue 60°, top pedestal 45°. tan60°=(h+1.6)/d=√3, tan45°=h/d=1, d=h. h+1.6 = h√3, 1.6=h(√3-1), h=1.6/(√3-1)=0.8(√3+1) m.

19. Solve building tower angles.

8 Marks Answer: Building h, tower 50m. Angle building to tower 60°, tower to building 30°. tan60°=50/d=√3, d=50/√3. tan30°=h/d=1/√3, h=d/√3=50/3 m.

20. Solve poles road.

8 Marks Answer: Poles h equal, road 80m. Point between, angles 60° one, 30° other. Let distance x to 60°, 80-x to 30°. tan60°=h/x=√3, h=x√3. tan30°=h/(80-x)=1/√3. x√3 /(80-x)=1/√3, 3x=80-x, 4x=80, x=20. h=20√3 m. Distances 20m, 60m.

Practice Tip: Draw diagrams; use trig table; approximate for checks.

Easily Share with Your Tribe