Complete Summary and Solutions for Inverse Trigonometric Functions – NCERT Class XII Mathematics Part I, Chapter 2 – Definitions, Concepts, Properties, Graphs, and Applications

Detailed summary and explanation of Chapter 2 ‘Inverse Trigonometric Functions’ from the NCERT Class XII Mathematics Part I textbook, covering the concept of inverse trigonometric functions, principal values, domain and range, graphs of inverse functions, fundamental identities, and their uses in solving problems, along with all NCERT questions and solutions.

Updated: 2 days ago

Categories: NCERT, Class XII, Mathematics Part I, Chapter 2, Inverse Trigonometric Functions, Principal Values, Domain, Range, Graphs, Identities, Summary, Questions, Answers
Tags: Inverse Trigonometric Functions, Principal Value, Domain, Range, Graphs, Identities, NCERT, Class 12, Mathematics, Summary, Explanation, Questions, Answers, Chapter 2
Post Thumbnail
Inverse Trigonometric Functions - Class 12 Mathematics Chapter 2 Ultimate Study Guide 2025

Inverse Trigonometric Functions

Chapter 2: Mathematics - Ultimate Study Guide | NCERT Class 12 Notes, Solved Examples, Exercises & Quiz 2025

Full Chapter Summary & Detailed Notes - Inverse Trigonometric Functions Class 12 NCERT

Overview & Key Concepts

  • Chapter Goal: Study restrictions on trig functions for inverses; principal branches, graphs, properties. Exam Focus: Domains/ranges (Table 2.1), principal values (Ex 2.1), identities (Ex 2.2), misc proofs. Fun Fact: Aryabhata's sine contributions. Core Idea: Restrict domain for one-one/onto. Real-World: Calculus integrals, engineering angles. Expanded: Graphs (Figs 2.1-2.6), branches, historical note.
  • Wider Scope: Links to Ch1 functions; previews calculus apps; sources: Pages 18-33, Figs 2.1-2.6.
  • Expanded Content: Point-wise subtopics; add 2025 relevance like signal processing.

2.1 Introduction

  • Inverses Need Bijection: Trig not one-one/onto over R; restrict domains (e.g., sin to [-π/2, π/2]).
  • Role: Define integrals in calculus; science/engineering.
  • Expanded: Evidence: Klein quote; debates: Multiple branches vs principal.
Conceptual Diagram: Trig to Inverse

Trig: Periodic waves. Inverse: Restricted curve, reflect over y=x (Fig 2.1(iii)).

Why This Guide Stands Out

Comprehensive: All branches, solved with steps; 2025 with derivations, graphs described.

2.2 Basic Concepts

  • Trig Domains/Ranges: sin: R → [-1,1]; tan: R - odd π/2 → R; etc. (Table intro).
  • Inverse Sin: Domain [-1,1]; principal [-π/2, π/2]. Branches: [-3π/2, -π/2], etc. sin(sin^{-1}x)=x, x∈[-1,1]; sin^{-1}(sin x)=x, x∈[-π/2, π/2].
  • Graph: Reflect sin over y=x (Figs 2.1(i-iii)).
  • Inverse Cos: Domain [-1,1]; principal [0, π]. Branches: [-π,0], etc.
  • Graph: Figs 2.2(i-ii).
  • Cosec^{-1}: Domain R-(-1,1); principal [-π/2, π/2] - {0}. Branches: [-3π/2, -π/2] - {-π}, etc.
  • Graph: Figs 2.3(i-ii).
  • Sec^{-1}: Domain R-(-1,1); principal [0, π] - {π/2}. Branches: [-π,0] - {-π/2}, etc.
  • Graph: Figs 2.4(i-ii).
  • Tan^{-1}: Domain R; principal (-π/2, π/2). Branches: (-3π/2, -π/2), etc.
  • Graph: Figs 2.5(i-ii).
  • Cot^{-1}: Domain R; principal (0, π). Branches: (-π,0), etc.
  • Graph: Figs 2.6(i-ii).
  • Summary Table: Principal branches (end of 2.2).
  • Notes: sin^{-1}x ≠ 1/sin x; principal value in branch range.
  • Expanded: Evidence: One-one checks; debates: Choice of principal (convention).

Quick Table: Principal Branches

FunctionDomainRange
\( \sin^{-1} x \)\([-1,1]\)\([- \pi/2, \pi/2]\)
\( \cos^{-1} x \)\([-1,1]\)\([0, \pi]\)
\( \csc^{-1} x \)\( \mathbb{R} - (-1,1) \)\([- \pi/2, \pi/2] - \{0\}\)
\( \sec^{-1} x \)\( \mathbb{R} - (-1,1) \)\([0, \pi] - \{\pi/2\}\)
\( \tan^{-1} x \)\( \mathbb{R} \)\((-\pi/2, \pi/2)\)
\( \cot^{-1} x \)\( \mathbb{R} \)\((0, \pi)\)

2.3 Properties

  • Basic: sin(sin^{-1}x)=x; etc. Valid in principal branches.
  • Identities: sin^{-1}(-x)= -sin^{-1}x; cos^{-1}(-x)= π - cos^{-1}x; etc.
  • Double Angle: sin^{-1}(2x√(1-x²))=2 sin^{-1}x, |x|≤1/√2 (Ex3).
  • Simplifications: tan^{-1}(cos x / (1+sin x)) = π/4 - x/2 (Ex4); cot^{-1}(√(x²-1)) = sec^{-1}x (Ex5).
  • Expanded: Evidence: Let y=sin^{-1}x → sin y=x; debates: Domain restrictions.

Miscellaneous Examples

  • Ex6: sin^{-1}(sin 3π/5)= π/5 (adjust branch).
  • Expanded: Proofs; historical: Aryabhata, Bhaskara.

Summary & Exercises

  • Key Takeaways: Restrict for inverse; principal branches; properties for simplification.
  • Exercises Tease: Principal values; prove identities; simplify.