Atoms and Nuclei Mastery – Interactive Quiz & Cheatsheet
Boost your understanding of Atoms and Nuclei with this engaging quiz and quick-reference guide tailored for exam success
Updated: just now
Categories: Mini Game, Physics, Class 12, Atomic Physics

Atoms and Nuclei Cheatsheet
Cheat Codes & Shortcuts
- Bohr’s Model: Electron orbits nucleus in discrete energy levels, \( E_n = -\frac{13.6}{n^2} \, \text{eV} \).
- Radius of Orbit: \( r_n = \frac{n^2 h^2 \epsilon_0}{\pi m e^2} \), where \( n \) is principal quantum number.
- Energy of Photon: \( E = h \nu = \frac{h c}{\lambda} \), emitted/absorbed during transitions.
- Rydberg Formula: \( \frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \), \( R = 1.097 \times 10^7 \, \text{m}^{-1} \).
- Nuclear Mass Defect: \( \Delta m = [Z m_p + (A-Z) m_n] - M \), where \( M \) is nuclear mass.
- Binding Energy: \( BE = \Delta m c^2 \), energy required to separate nucleons.
- Radioactive Decay Law: \( N = N_0 e^{-\lambda t} \), where \( \lambda \) is decay constant.
- Half-Life: \( T_{1/2} = \frac{\ln 2}{\lambda} \approx \frac{0.693}{\lambda} \).
- Alpha Decay: \( _Z^A X \to _{Z-2}^{A-4} Y + _2^4 \text{He} \).
- Beta Decay (β⁻): \( _Z^A X \to _{Z+1}^A Y + _{-1}^0 e + \bar{\nu}_e \).
Quick Reference Table
Type | Concept | Formula/Description |
---|---|---|
Bohr Model | Energy Levels | \( E_n = -\frac{13.6}{n^2} \, \text{eV} \) |
Orbit Radius | Bohr’s Radius | \( r_n = \frac{n^2 h^2 \epsilon_0}{\pi m e^2} \) |
Photon Energy | Transition Energy | \( E = \frac{h c}{\lambda} \) |
Rydberg | Spectral Lines | \( \frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \) |
Binding Energy | Nuclear Stability | \( BE = \Delta m c^2 \) |
Decay Law | Radioactivity | \( N = N_0 e^{-\lambda t} \) |
Advice
Identify Problem Type: Determine if it’s atomic structure or nuclear physics.
Use Bohr’s Model: Apply energy level formula for hydrogen-like atoms.
Units: Convert energy to eV or J, and wavelength to nm or m as needed.
Nuclear Reactions: Balance atomic and mass numbers in decay processes.
Verify: Check calculations, especially for binding energy and decay constants.
Atoms and Nuclei Quick Tips
- Bohr’s Model: Use \( E_n = -\frac{13.6}{n^2} \, \text{eV} \) for hydrogen atom energy levels.
- Rydberg Formula: Apply \( \frac{1}{\lambda} = R \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \) for spectral lines.
- Binding Energy: Calculate mass defect first, then use \( BE = \Delta m c^2 \).
- Decay Constant: Relate to half-life via \( T_{1/2} = \frac{\ln 2}{\lambda} \).
- Nuclear Reactions: Ensure conservation of atomic and mass numbers in alpha and beta decay.
Atoms and Nuclei Speed Quiz
Test your speed with 5 atoms and nuclei questions! You have 30 seconds per question.
Question: 1/5
Time left: 30s
Quiz Complete!
Your Score: 0/5
Group Discussions
No forum posts available.