Electrostatics Mastery – Interactive Quiz & Cheatsheet
Boost your understanding of Electrostatics with this engaging quiz and quick-reference guide tailored for exam success
Updated: just now
Categories: Mini Game, Physics, Class 11, Electrostatics

Electrostatics Cheatsheet
Cheat Codes & Shortcuts
- Coulomb’s Law: \( F = k \frac{|q_1 q_2|}{r^2} \), where \( k \approx 8.99 \times 10^9 \, \text{N·m}^2/\text{C}^2 \).
- Electric Field: \( E = \frac{F}{q} = k \frac{q}{r^2} \), direction depends on charge sign.
- Electric Potential: \( V = k \frac{q}{r} \), potential energy \( U = qV \).
- Gauss’s Law: \( \Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enc}}}{\epsilon_0} \), where \( \epsilon_0 \approx 8.85 \times 10^{-12} \, \text{C}^2/\text{N·m}^2 \).
- Capacitance: \( C = \frac{Q}{V} \), parallel plate: \( C = \epsilon_0 \frac{A}{d} \).
- Electric Field of a Dipole: At axial point, \( E \approx \frac{2kp}{r^3} \), where \( p = qd \).
- Potential Energy: \( U = -\vec{p} \cdot \vec{E} \) for a dipole in an electric field.
- Conductors: Electric field inside a conductor is zero in electrostatic equilibrium.
- Superposition: Total \( \vec{E} \) or \( V \) is the vector/scalar sum of contributions from all charges.
- Electric Flux: \( \Phi_E = \vec{E} \cdot \vec{A} \) for uniform field and area.
Quick Reference Table
Concept | Formula | Description |
---|---|---|
Coulomb’s Law | \( F = k \frac{|q_1 q_2|}{r^2} \) | Force between two point charges. |
Electric Field | \( E = k \frac{q}{r^2} \) | Field due to a point charge. |
Electric Potential | \( V = k \frac{q}{r} \) | Potential due to a point charge. |
Gauss’s Law | \( \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enc}}}{\epsilon_0} \) | Relates electric flux to enclosed charge. |
Capacitance | \( C = \epsilon_0 \frac{A}{d} \) | Capacitance of a parallel plate capacitor. |
Dipole Field | \( E \approx \frac{2kp}{r^3} \) | Electric field along dipole axis. |
Advice
Identify Symmetry: Use Gauss’s Law for symmetric charge distributions (spherical, cylindrical).
Superposition: Break complex charge systems into individual contributions.
Potential vs. Field: Compute potential first for easier field calculations via \( \vec{E} = -\nabla V \).
Units Check: Ensure units align (e.g., N/C for electric field, V for potential).
Visualize: Sketch field lines and equipotential surfaces to understand the system.
Electrostatics Quick Tips
- Coulomb’s Law: Use \( F = k \frac{q_1 q_2}{r^2} \) for point charges; direction is along the line joining charges.
- Electric Field: \( E = \frac{F}{q} \), vector sum for multiple charges.
- Gauss’s Law: Apply for high-symmetry cases to simplify field calculations.
- Potential Energy: For multiple charges, sum pairwise energies: \( U = \sum k \frac{q_i q_j}{r_{ij}} \).
- Capacitors: Combine in series (\( \frac{1}{C_{\text{eq}}} = \sum \frac{1}{C_i} \)) or parallel (\( C_{\text{eq}} = \sum C_i \)).
Electrostatics Speed Quiz
Test your speed with 5 electrostatics questions! You have 30 seconds per question.
Question: 1/5
Time left: 30s
Quiz Complete!
Your Score: 0/5
Group Discussions
No forum posts available.