Matrices And Determinants Speed Test for Exam Prep - Interactive Mini Game Updated on Wednesday, August 6, 2025

Sharpen your Matrices And Determinants skills with this interactive mini-game designed to improve your speed and accuracy for competitive exams.

Updated: just now

Categories: Mini Game, Math, Class 11
Tags: Mini Game, Math, Class 11, matrices, determinants
Post Thumbnail
Matrices and Determinants Cheatsheet & Quiz

Matrices and Determinants Cheatsheet

Cheat Codes & Shortcuts

  • Matrix: Rectangular array of numbers, e.g., \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \).
  • Determinant (2x2): For \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), \( \det(A) = ad - bc \).
  • Determinant (3x3): Use cofactor expansion or rule of Sarrus.
  • Matrix Addition: \( A + B \), add corresponding elements, same dimensions.
  • Matrix Multiplication: \( AB \), row-by-column, if dimensions compatible.
  • Inverse (2x2): For \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), \( A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \).
  • Adjoint: Transpose of cofactor matrix.
  • Cramer’s Rule: Solve \( Ax = b \), \( x_i = \frac{\det(A_i)}{\det(A)} \).
  • Rank: Number of linearly independent rows/columns.
  • Eigenvalues: Solve \( \det(A - \lambda I) = 0 \).

Quick Reference Table

Type Form Solution/Method
Determinant \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) \( \det(A) = 1 \cdot 4 - 2 \cdot 3 = -2 \)
Inverse \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) \( A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \)
Cramer’s Rule \( \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix} \) Compute \( \det(A) \), \( \det(A_1) \), \( \det(A_2) \)
Eigenvalues \( \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \) Solve \( \det \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix} = 0 \)
Rank \( \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \) Row reduce to find independent rows
Matrix Product \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \) Row-by-column multiplication

Advice

First Step: Check matrix dimensions for operations.

Determinants: Use cofactor expansion for 3x3 or higher.

Inverse: Ensure \( \det(A) \neq 0 \) before computing.

Cramer’s Rule: Efficient for small systems with non-zero determinant.

Verify: Confirm matrix products and inverses by multiplication.

Matrices and Determinants Quick Tips

  • Matrix Addition: Only for same dimensions, add element-wise.
  • Determinant: For 2x2, use \( ad - bc \); for 3x3, use Sarrus or expansion.
  • Inverse: Compute using adjoint and determinant, check \( AA^{-1} = I \).
  • Eigenvalues: Solve characteristic equation \( \det(A - \lambda I) = 0 \).
  • Rank: Use row reduction to find number of independent rows.

Matrices and Determinants Speed Quiz

Test your speed with 5 matrices and determinants questions! You have 30 seconds per question.