Matrices And Determinants Speed Test for Exam Prep - Interactive Mini Game Updated on Wednesday, August 6, 2025
Sharpen your Matrices And Determinants skills with this interactive mini-game designed to improve your speed and accuracy for competitive exams.
Updated: just now
Categories: Mini Game, Math, Class 11

Matrices and Determinants Cheatsheet
Cheat Codes & Shortcuts
- Matrix: Rectangular array of numbers, e.g., \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \).
- Determinant (2x2): For \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), \( \det(A) = ad - bc \).
- Determinant (3x3): Use cofactor expansion or rule of Sarrus.
- Matrix Addition: \( A + B \), add corresponding elements, same dimensions.
- Matrix Multiplication: \( AB \), row-by-column, if dimensions compatible.
- Inverse (2x2): For \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), \( A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \).
- Adjoint: Transpose of cofactor matrix.
- Cramer’s Rule: Solve \( Ax = b \), \( x_i = \frac{\det(A_i)}{\det(A)} \).
- Rank: Number of linearly independent rows/columns.
- Eigenvalues: Solve \( \det(A - \lambda I) = 0 \).
Quick Reference Table
Type | Form | Solution/Method |
---|---|---|
Determinant | \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) | \( \det(A) = 1 \cdot 4 - 2 \cdot 3 = -2 \) |
Inverse | \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) | \( A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \) |
Cramer’s Rule | \( \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix} \) | Compute \( \det(A) \), \( \det(A_1) \), \( \det(A_2) \) |
Eigenvalues | \( \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \) | Solve \( \det \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix} = 0 \) |
Rank | \( \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \) | Row reduce to find independent rows |
Matrix Product | \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \) | Row-by-column multiplication |
Advice
First Step: Check matrix dimensions for operations.
Determinants: Use cofactor expansion for 3x3 or higher.
Inverse: Ensure \( \det(A) \neq 0 \) before computing.
Cramer’s Rule: Efficient for small systems with non-zero determinant.
Verify: Confirm matrix products and inverses by multiplication.
Matrices and Determinants Quick Tips
- Matrix Addition: Only for same dimensions, add element-wise.
- Determinant: For 2x2, use \( ad - bc \); for 3x3, use Sarrus or expansion.
- Inverse: Compute using adjoint and determinant, check \( AA^{-1} = I \).
- Eigenvalues: Solve characteristic equation \( \det(A - \lambda I) = 0 \).
- Rank: Use row reduction to find number of independent rows.
Matrices and Determinants Speed Quiz
Test your speed with 5 matrices and determinants questions! You have 30 seconds per question.
Question: 1/5
Time left: 30s
Quiz Complete!
Your Score: 0/5
Group Discussions
No forum posts available.