Integral Calculus Speed Test for Exam Prep - Interactive Mini Game Updated on Wednesday, August 7, 2025

Sharpen your Integral Calculus skills with this interactive mini-game designed to improve your speed and accuracy for competitive exams.

Updated: just now

Categories: Mini Game, Math, Class 11
Tags: Mini Game, Math, Class 11, Integral Calculus, Integration
Post Thumbnail
Integral Calculus Cheatsheet & Quiz

Integral Calculus Cheatsheet

Cheat Codes & Shortcuts

  • Definition: Integral represents area under a curve or antiderivative.
  • Indefinite Integral: \( \int f(x) \, dx = F(x) + C \), where \( F'(x) = f(x) \).
  • Definite Integral: \( \int_a^b f(x) \, dx = F(b) - F(a) \).
  • Substitution Rule: \( \int f(g(x)) g'(x) \, dx = \int f(u) \, du \), where \( u = g(x) \).
  • Integration by Parts: \( \int u \, dv = uv - \int v \, du \).
  • Partial Fractions: Decompose rational functions for integration.
  • Trigonometric Integrals: Use identities like \( \sin^2 x = \frac{1 - \cos 2x}{2} \).
  • Improper Integrals: Evaluate limits for infinite bounds or discontinuities.
  • Area Between Curves: \( \int_a^b [f(x) - g(x)] \, dx \).
  • Fundamental Theorem: If \( F'(x) = f(x) \), then \( \int_a^b f(x) \, dx = F(b) - F(a) \).

Quick Reference Table

Type Form Solution
Basic \( \int x^n \, dx \) \( \frac{x^{n+1}}{n+1} + C \), \( n \neq -1 \)
Substitution \( \int x e^{x^2} \, dx \) Let \( u = x^2 \), then \( \int \frac{1}{2} e^u \, du \)
By Parts \( \int x e^x \, dx \) Use \( u = x \), \( dv = e^x \, dx \)
Trigonometric \( \int \sin^2 x \, dx \) Use \( \sin^2 x = \frac{1 - \cos 2x}{2} \)
Partial Fractions \( \int \frac{1}{x^2 - 1} \, dx \) Decompose as \( \frac{A}{x-1} + \frac{B}{x+1} \)
Improper \( \int_1^\infty \frac{1}{x^2} \, dx \) Evaluate \( \lim_{t \to \infty} \int_1^t \frac{1}{x^2} \, dx \)

Advice

First Step: Identify the integral type: basic, trigonometric, substitution, etc.

Substitution: Choose \( u \) to simplify the integrand.

By Parts: Select \( u \) to reduce complexity when differentiated.

Trigonometric: Apply identities to simplify before integrating.

Verify: Differentiate your antiderivative to confirm it matches the integrand.

Integral Calculus Quick Tips

  • Basic Integrals: Memorize forms like \( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \).
  • Substitution: Choose \( u \) to eliminate complex expressions.
  • Integration by Parts: Use when product of functions, prioritize \( u \) that simplifies.
  • Trigonometric Integrals: Use identities like \( \cos^2 x = \frac{1 + \cos 2x}{2} \).
  • Improper Integrals: Check convergence by evaluating limits.

Integral Calculus Speed Quiz

Test your speed with 5 integral calculus questions! You have 30 seconds per question.