Integral Calculus Speed Test for Exam Prep - Interactive Mini Game Updated on Wednesday, August 7, 2025
Sharpen your Integral Calculus skills with this interactive mini-game designed to improve your speed and accuracy for competitive exams.
Updated: just now
Categories: Mini Game, Math, Class 11

Integral Calculus Cheatsheet
Cheat Codes & Shortcuts
- Definition: Integral represents area under a curve or antiderivative.
- Indefinite Integral: \( \int f(x) \, dx = F(x) + C \), where \( F'(x) = f(x) \).
- Definite Integral: \( \int_a^b f(x) \, dx = F(b) - F(a) \).
- Substitution Rule: \( \int f(g(x)) g'(x) \, dx = \int f(u) \, du \), where \( u = g(x) \).
- Integration by Parts: \( \int u \, dv = uv - \int v \, du \).
- Partial Fractions: Decompose rational functions for integration.
- Trigonometric Integrals: Use identities like \( \sin^2 x = \frac{1 - \cos 2x}{2} \).
- Improper Integrals: Evaluate limits for infinite bounds or discontinuities.
- Area Between Curves: \( \int_a^b [f(x) - g(x)] \, dx \).
- Fundamental Theorem: If \( F'(x) = f(x) \), then \( \int_a^b f(x) \, dx = F(b) - F(a) \).
Quick Reference Table
Type | Form | Solution |
---|---|---|
Basic | \( \int x^n \, dx \) | \( \frac{x^{n+1}}{n+1} + C \), \( n \neq -1 \) |
Substitution | \( \int x e^{x^2} \, dx \) | Let \( u = x^2 \), then \( \int \frac{1}{2} e^u \, du \) |
By Parts | \( \int x e^x \, dx \) | Use \( u = x \), \( dv = e^x \, dx \) |
Trigonometric | \( \int \sin^2 x \, dx \) | Use \( \sin^2 x = \frac{1 - \cos 2x}{2} \) |
Partial Fractions | \( \int \frac{1}{x^2 - 1} \, dx \) | Decompose as \( \frac{A}{x-1} + \frac{B}{x+1} \) |
Improper | \( \int_1^\infty \frac{1}{x^2} \, dx \) | Evaluate \( \lim_{t \to \infty} \int_1^t \frac{1}{x^2} \, dx \) |
Advice
First Step: Identify the integral type: basic, trigonometric, substitution, etc.
Substitution: Choose \( u \) to simplify the integrand.
By Parts: Select \( u \) to reduce complexity when differentiated.
Trigonometric: Apply identities to simplify before integrating.
Verify: Differentiate your antiderivative to confirm it matches the integrand.
Integral Calculus Quick Tips
- Basic Integrals: Memorize forms like \( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \).
- Substitution: Choose \( u \) to eliminate complex expressions.
- Integration by Parts: Use when product of functions, prioritize \( u \) that simplifies.
- Trigonometric Integrals: Use identities like \( \cos^2 x = \frac{1 + \cos 2x}{2} \).
- Improper Integrals: Check convergence by evaluating limits.
Integral Calculus Speed Quiz
Test your speed with 5 integral calculus questions! You have 30 seconds per question.
Question: 1/5
Time left: 30s
Quiz Complete!
Your Score: 0/5
Group Discussions
No forum posts available.