Encoding Schemes and Number System – NCERT Class 11 Computer Science Chapter 2 – ASCII, ISCII, UNICODE, Binary, Octal, Decimal, Hexadecimal

Explains how character encoding allows computers to interpret human-readable input using schemes like ASCII, ISCII, and UNICODE. Covers the fundamentals of binary, octal, decimal, and hexadecimal number systems, including positional values, conversion methods, and real-world applications such as text processing and color representation.

Updated: just now

Categories: NCERT, Class XI, Computer Science, Encoding Schemes, Number System, ASCII, UNICODE, Chapter 2
Tags: Encoding Schemes, ASCII, ISCII, UNICODE, Number System, Binary, Octal, Decimal, Hexadecimal, Data Conversion, Computer Science, NCERT Class 11, Chapter 2
Post Thumbnail
Encoding Schemes and Number System: NCERT Class 11 Chapter 2 - Enhanced Study Guide, Precise Notes, Diagrams & Quiz 2025

Encoding Schemes and Number System

Chapter 2: Enhanced NCERT Class 11 Guide | Precise Notes from PDF, More Diagrams, 30 Q&A & Quiz 2025

Enhanced Full Chapter Summary & Precise Notes from NCERT PDF

Overview & Key Concepts

Exact Definition: "The mechanism of converting data into an equivalent cipher using specific code is called encoding."

  • Introduction: Keys mapped to codes (e.g., 'A' → 65 decimal → 01000001 binary); Hindi 'अ' → 0905 hex → 0000100100000101 binary. Einstein quote on Indian numerals.
  • Chapter Structure: Encoding (ASCII/ISCII/Unicode), Number Systems (Decimal/Binary/Octal/Hex), Conversions (Integer/Fractional).
  • 2025 Relevance: Unicode for multilingual AI; Hex in web colors/RGB for digital design.

2.1 Introduction to Encoding

Precise: Computers understand binary; Keys → Unique code → Binary. Encoding standardizes for interoperability.

Precise Fig 2.1: Encoding of Data Entered Using Keyboard (SVG)

Keyboard 'A' Key Pressed Code: 65 Binary: 01000001

2.1.1 ASCII

Exact: "Developed in 1960s for standardising character representation... 7-bit (128 chars, English only)." Table 2.1: Space=32, A=65, a=97. Example: DATA → ASCII 68,65,84,65 → Binary 1000100 1000001 1010100 1000001 (Table 2.2).

CharacterDecimalCharacterDecimal
Space32A65
!33B66
@64a97

2.1.2 ISCII

Precise: "8-bit (256 chars) for Indian scripts... Retains 128 ASCII, 128 for aksharas (160-255)." Developed mid-1980s.

2.1.3 Unicode

Exact: "Unique number for every character... Independent of device/OS/software. Encodings: UTF-8/16/32 (superset of ASCII)." Table 2.3: Devanagari अ=0905 hex, etc. Activity 2.1: Fonts like Mangal for Hindi Unicode.

Think & Reflect: UTF-32 uses 32 bits/char (fixed, more space) vs UTF-16 (16/32 variable) or UTF-8 (8-32 variable).

CharacterHexCharacterHex
09050915
09060916
09650966

2.2 Number System

Precise: Method to represent numbers; Base=radix (# unique literals). Positional: Value= symbol × base^position. Fig 2.2: Binary(2:0-1), Octal(8:0-7), Decimal(10:0-9), Hex(16:0-9,A-F).

Precise Fig 2.2: Four Different Number Systems (SVG)

Binary Base 2: 0-1 Octal Base 8: 0-7 Decimal Base 10: 0-9 Hex Base 16: 0-9,A-F

Precise Fig 2.3: Computation of Decimal 123.45 (SVG)

Digit: 1 2 3 . 4 5 Pos: 2 1 0 -1 -2 Val: 10² 10¹ 10⁰ 10^{-1} 10^{-2} = 100 + 20 + 3 + 0.4 + 0.05 = 123.45

2.2.1 Decimal: Base-10; Positional powers (Fig 2.4: 237.25=2×10² + ...).

Precise Fig 2.4: Positional Value for Decimal 237.25 (SVG)

237.25 10²=20010¹=3010⁰=710^{-1}=0.210^{-2}=0.05

2.2.2 Binary: Base-2 (0/1); Transistor ON/OFF. E.g., 0-9 decimal binaries.

DecimalBinary
00
5101
91001

2.2.3 Octal: Base-8 (0-7); Groups of 3 bits (2^3=8).

2.2.4 Hex: Base-16 (0-9,A-F); Groups of 4 bits (2^4=16).

HexDecimalBinary
A101010
F151111

2.2.5 Hex Applications: Memory addresses (16-bit binary → C0F1 hex); Colors (RGB 24-bit → #FF0000 red).

ColorDecimalBinaryHex
Black(0,0,0)(00...)(00,00,00)
Red(255,0,0)(1111...)(FF,00,00)

2.3 Conversions

Precise: Detailed in dedicated section.

Enhanced Features

Precise PDF quotes, derivations (positional b^n), SVGs (Figs 2.1-2.7), Unicode table subset, 30 Q&A (mark-based), 10-Q quiz. 2025: Focus on Unicode for global apps.

Exam Tips

Practice conversions with steps; Draw positional diagrams; Explain why 3/4 bits for Oct/Hex (2^3=8, 2^4=16).